Inverse heat transfer analysis
A transient, finite difference heat transfer model was developed in FORTRAN to simulate the experimental tests performed by LP-3D. The model allows the user to specify geometry, material properties, thermal loads and boundary conditions, such as laser power, laser heating time and ambient temperature. The user can also freely configure the number and spatial positions of the temperature sensors.
This bespoke software was verified against simulations using the commercial finite element analysis software Abaqus. The software was then used to simulate the LP-3D temperature sensor output for tests conducted on Ti-6Al-4V powders. An example of the experimental data compared to the model predictions is provided in Figure 2.
Inverse analysis based on an advanced Monte-Carlo Markov-Chain (MCMC) algorithm was performed to determine the value of bulk powder thermal conductivity that best fits the experimental data. The thermal conductivity values obtained were consistent across all experimental datasets for different powder layer depths, laser powders and heating times.